Explora unam global tv
Explora unam global tv
explorar
Explora por categoría
regresar

El Nobel de Química, un reconocimiento a la técnica CRISPR y un galardón perdido para España

Hasta hace pocos días el doctor Lluís Montoliu tenía una certeza: la de que tarde o temprano el microbiólogo Francis Mojica recibiría el Nobel de Química. Sin embargo, el investigador barcelonés hoy se confiesa decepcionado de que la Academia Sueca de Ciencias le haya concedido ese galardón —aunque subrayando que eso sí, de forma muy merecida— a la francesa Emmanuelle Charpentier y a la estadounidense Jennifer Doudna por desarrollar las herramientas CRISPR que permiten la edición genética, sin considerar siquiera al español que descubrió cómo opera este mecanismo.

En un texto periodístico reciente, Montoliu —adscrito al Centro Nacional de Biotecnología en Madrid— explica que aunque las dos científicas recibirán pronto el reconocimiento por un trabajo que dieron a conocer en junio de 2012, fue Mojica quien describió los primeros sistemas CRISPR en arqueas en el ya lejano 1993.

Y no sólo eso, fue también él quien en 2002 acuñó el acrónimo a partir del término en inglés Clustered Regularly Interspaced Short Palindromic Repeats ya que, al ver que ciertas secuencias se repetían en el genoma de bacterias y arqueas, de alguna manera le recordaron a los palíndromos, es decir, a esas frases que pueden leerse al derecho y al revés. “Dicha palabra se inventó en Alicante”.

Las mismas Doudna y Charpentier han reconocido que fue un artículo de Mojica publicado en 2005 y donde se explica cómo este sistema permite a ciertos microorganismos defenderse contra los virus, el que les dio la pauta para desarrollar su técnica de edición genética, por lo que Lluís Montoliu no da rodeos al afirmar que esto es “un Nobel perdido para la ciencia básica española”.

¿Pero cómo funciona?

Durante su estancia más reciente en la UNAM, Lluís Montoliu visitó el Instituto de Fisiología Celular (IFC) para hablar de la técnica CRISPR, a la que describió como los comandos Ctrl+C y el Ctrl+V empleados para cortar y pegar un texto en la computadora, ya que permite editar el ADN dentro de la célula y cambiar su información a fin de corregir mutaciones y prevenir o combatir enfermedades.

“Para entender cómo funciona imaginemos unas tijeras moleculares —en este caso unas proteínas llamadas nucleasas— capaces de hacer cortes en el material genético, justo en las secuencias que le indicamos, para en su lugar introducir otras letras y reparar el genoma. Por ello decimos que es un sistema de edición”, explicó.

El científico español aseguró que esta tecnología plantea nuevas formas de terapia génica para alteraciones sin solución. “En animales se ha logrado todo lo que desearíamos llevar a la clínica, pues se han tratado con éxito padecimientos congénitos o degenerativos como distrofia muscular de Duchenne, la retinosis pigmentaria (una de las principales causas de ceguera), Parkinson o Huntington”.

Ya en humanos se han tomado células de enfermos de cáncer desahuciados para inactivar genes para luego reinfundírselas, como se hizo en China con un paciente del cual se obtuvieron linfocitos con el fin de apagar un gen llamado PD1, que actúa como freno de mano del sistema inmune, con la esperanza de que el organismo luchara más eficazmente contra el padecimiento, mientras que en Estados Unidos se ha empleado para tratar un caso de ceguera congénita.

A decir del doctor Montoliu, estos son apenas los primeros intentos de trasladar este sistema de edición genética a la clínica, pero es indudable que en breve será posible llevar los avances conseguidos en los modelos animales a las personas. “Sin embargo, debemos andarnos con tiento, porque aunque esta tecnología ofrece mucho de bueno, también tiene aspectos que aún no controlamos”.

Ciencia básica con aplicaciones sorprendentes

 Para Félix Recillas Targa, director del IFC, el CRISPR es un ejemplo paradigmático de un trabajo de investigación básica que muy rápido dio pie a una aplicación de potencial extraordinario, pues su descubridor Francis Mojica, académico de la Universidad de Alicante, comenzó a estudiar a unos procariotas llamados arqueas hace no tanto, a finales de los 80, inicios de los 90, y fue ahí cuando vio que en su genoma había series repetidas y espaciadas por otros fragmentos, de los cuales ignoraba su función.

Al investigar más vio que se trataba de secuencias idénticas a pedazos de virus que infectan a las bacterias y constató que esto las hacía resistente a las infecciones virales, encontrando así un sistema inmune bacterial hasta entonces desconocido, expuso por su parte el doctor Montoliu.

“Cuando nos vacunan del sarampión nos hacemos resistentes a esa enfermedad, pero no podemos heredar dicha característica a nuestros hijos, mientras que las bacterias sí; esto fue clave para lo que (Doudna y Charpentier) descubrirían  en 2012: que el sistema inmune bacterial puede usarse como una herramienta para corregir secuencias o incorporar mutaciones”, añadió el barcelonés.

Sin embargo, el CRISPR no es el único método de edición genética; al menos existen tres más. Están las meganucleasas de las células de levaduras, las nucleasas asociadas a dedos de zinc (artificiales y salidas del laboratorio) y las llamadas TALENs, nucleasas derivadas de unos patógenos que infectan a las plantas. Todas hacen exactamente lo mismo: cortar el ADN.

¿Entonces qué hace que CRISPR sea tan especial?, preguntó el profesor Montoliu. “¡Fácil! Se trata de una herramienta que ha evolucionado de la mano de las bacterias, literalmente, durante miles de millones de años y, por ello, esto que hoy llega a nuestras manos es un instrumento extraordinariamente optimizado y pulido”.

En opinión del español, el único límite para aprovechar el potencial de las CRISPR es la imaginación científica. “Hace no mucho, unos investigadores de Boston usaron estas estrategias y codificaron fotogramas de una película dentro del genoma de una bacteria. ¿Esto de qué sirve? Sólo para demostrar que es posible, pues el mero hecho de emplear las diferentes ristras de las letras G A T C e introducir una imagen dentro del material genético, aunque puede no sernos útil —no lo sabemos—, en realidad es algo sorprendente.

Un campo en desarrollo acelerado

En internet corre la grabación de un experimento social donde un grupo de jóvenes instalan una caseta en el puerto de San Francisco, California, y preguntan a quienes pasean por allí qué preferirían: invertir para entender cómo funciona el sistema inmunológico de las bacterias o en curar la diabetes, casi todos votaron la última opción.

“Todos anhelan curar las enfermedades, aunque no reparan en que al apoyar la investigación básica —en este caso la investigación de cómo las bacterias se defienden de los virus— no sólo es factible curar la diabetes, sino otras patologías”, refirió el profesor Montoliu.

No obstante, ésta es una vía para alcanzar dicho objetivo y si quisiéramos ejemplificar qué tan rápido vamos avanzando, agregó, consideremos que los primeros ejemplos de terapia génica con CRISPR datan de enero de 2016, apenas hace cuatro años, y desde entonces no dejan de aparecer artículos al respecto (en 2002, cuando se acuñó el término CRISPR, sólo había una publicación sobre el tema y hoy, según datos de PubMed, hay 20 mil 600).

Por ello, el doctor Lluís Montoliu se dice optmista respecto a loque nos pueda traer esta técnica a futuro, pues en sus palabras “estamos ante una revolución verdadera e irreversible, y esto ya no para”.